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We present a rather accurate method to compute the microwave instability threshold
that is computationally relatively simple to perform. We derive the integral equation
upon which the method is based, and simplify it by approximating the longitudinal
motion by that of a simple harmonic oscillator. The stable frequencies can be found as

a function of current using standard eigenvalue solvers, while we identify the microwave
instability threshold as the lowest current at which a pair of the stable frequencies cease
to exist. Our method appears to represent a computationally fast and accurate way

to compute the bunched-beam microwave instability threshold in storage rings, and we
show examples for both the shielded and unshielded coherent synchrotron impedance.
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1. Introduction

Study of the microwave instability for bunched beams has a long history1. One

important development was Boussard’s observation2 that because the microwave

instability develops over small scales, one might usefully apply the coasting beam

theory of Refs.3,4 by replacing the average current with the peak current. The re-

sulting criterion is sometimes called the Boussard-Keil-Schnell condition, and while

easy to compute it typically underestimates the microwave instability threshold

current by a factor of 2 or more. At about this same time Sacherer developed a

matrix analysis of the Vlasov equation that identified the microwave instability as

resulting from classical mode-coupling5,6. Since that time a number of related ap-

proaches have been put forward, including more formalized Boussard-type analyses

in7,8, along with matrix-type calculations in9–12. The former tend to offer quick

estimates, while the latter may require significant computational effort. This pa-

per presents a method for obtaining a rather accurate estimate for the microwave

instability threshold current using a modest level of computation.

Our calculation was partly inspired by the work in Refs.7,8,13, and we also de-

rive a difficult-to-solve integral equation governing stability. Rather than turning

to approximations, we show how the current for a given stable frequency can be

determined by a relatively easy to solve eigenvalue problem. In this way we can

determine the current at which two initially real and distinct frequencies merge and

cease to exist, which we associate with longitudinal mode-coupling5,6 and the onset

of the microwave instability. The majority of this paper is spent deriving the inte-

gral equation that governs longitudinal stability and describing how we propose to

solve it, but we also apply it to predict the microwave instability threshold for both
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an unshielded and shielded CSR impedance. Future work will apply the theory to

other impedances.

2. Theory

We will use the longitudinal wakefield W‖(z) to quantify the one-turn energy loss

of a test particle located at z due to the fields generated by a drive particle at

z = 0. Here, z = s − ct is the co-moving longitudinal coordinate, where s is the

independent variable along the ring, t is the arrival time of the particle, and c is the

speed of light. For the usual wakefields that result from the interaction of an ultra-

relativistic particle’s Coulomb field with changes in the vacuum chamber geometry

and/or its finite resistivity, W‖(z > 0) = 0 due to causality; wakefields that describe

space charge or radiation effects such as coherent synchrotron radiation (CSR) may

be non-vanishing when z > 0. The Fourier transform of W‖(z) with respect to time

is the longitudinal impedance, so that

W‖(z) =
c

2π

∫

dk eikzZ‖(k). (1)

We will investigate the onset of the microwave instability in the presence of Z‖(k)
using the linearized Vlasov equation. Hence, we will consider the evolution of the

one-particle longitudinal distribution function F (z, pz; s), where the Hamiltonian

longitudinal coordinates are taken to be the position z = s− ct and the momentum

pz = −(γ − γ0)/γ0, with γ and γ0 being the Lorentz factors of the particle and the

reference orbit, respectively; we choose the negative energy deviation rather than

the usual δ = (γ−γ0)/γ0 so that the associated Hamiltonian is positive for particles

above transition.

We take the distribution F (z, pz; s) to be normalized such that integrating over

phase space equals unity, and assume that it obeys the Vlasov equation

∂F

∂s
+

∂H
∂pz

∂F

∂z
− ∂H

∂z

∂F

∂pz
=

∂F

∂s
+ {F,H} = 0, (2)

where the Poisson bracket {·, ·} is defined as usual and the Hamiltonian

H(z, pz; s) =
αc

2
p2z + V (z; s). (3)

Here, αc is the momentum compaction, while the longitudinal potential V (z; s)

includes both the longitudinal focusing provided by rf acceleration and collective

effects described by the one-turn wakefield (or impedance) W‖(z) (Z‖(k)). Ignoring
the damping and diffusion associated with synchrotron emission in Eq. (2) is justi-

fied if these effects are slow with respect to both the synchrotron motion and any

instability growth rates; Vlasov and Fokker-Planck studies done in Refs.12,14 have

shown that this simplification appears to apply for a wide variety of longitudinal

impedances.

To analyze the longitudinal stability of the beam, we write the distribution

function as the sum F (z, pz; s) = F0(z, pz) + F1(z, pz; s), with F0 the equilibrium
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distribution and F1 the perturbation. In keeping with this linearization, we also

separate the longitudinal potential associated with one turn in the ring as V (z; s) =

V0(z) + V1(z; s). The static potential V0(z) includes both the rf focusing and any

potential-well distortion due to equilibrium wakefields driven by the unperturbed

distribution function F0(z, pz), while the potential V1(z; s) contains the wakefields

driven by the perturbation F1(z, pz; s). Under these assumptions, the single-particle

Hamiltonian for longitudinal motion in a storage ring can be written as the sum

H(z, pz; s) = H0(z, pz) + V1(z; s), (4)

where the equilibrium Hamiltonian H0(z, pz) ≡ αc

2 p2z + V0(z) is defined such that

{F0,H0} = 0. The perturbing potential V1 involves the impedance driven by the

perturbation F1, being given by

V1(z; s) ≡ − 2I

γIA

∫

dẑdp̂z F1(ẑ, p̂z; s)

∫

dk eik(z−ẑ)Z‖(k)

ikZ0
, (5)

where I is the average single-bunch current (i.e., the bunch charge times the speed

of light divided by the ring circumference), Z0 ≈ 377 Ω is the impedance of free

space, and IA ≈ 17 kA is the Alfvén current.

We begin our analysis by assuming that we have solved the unperturbed prob-

lem, by which we mean that we have found the action-angle variables associated with

the Hamiltonian H0(z, pz) = αcp
2
z/2 + V0(z). This implies that we have computed

the canonical transformation (z, pz) → (Φ, I) that results in H0(z, pz) → H0(I) and
F0(z, pz) → F0(I), in which case the linearized Vlasov equation for the perturbation

becomes
[

∂

∂s
+

∂H0

∂I
∂

∂Φ

]

F1(Φ, I; s) = − 2I

γIA

∂F0

∂I
∂

∂Φ

∫

dΦ̂dÎ F1(Φ̂, Î; s)

×
∫

dk eik[z(Φ,I)−z(Φ̂,Î)]Z‖(k)

ikZ0
.

(6)

To make further analytic progress, we will approximate the unperturbed motion

as that of a simple harmonic oscillator. In the simplest setting we assume that the

unperturbed motion is given entirely by the rf focusing, so that V0(z) = ω2
sz

2/2c2αc

with ωs the synchrotron frequency, but an extension can be made by using the self-

consistent bunch length σz obtained from the Häıssinski equilibrium solution that

includes the wakefields from F0. For now we assume simple harmonic motion such

that ∂H0/∂I = ωs/c = αcσδ/σz, while the position and equilibrium distribution

function are given by

z = σz

√

2I/〈I〉 cosΦ and F0(I) =
e−I/〈I〉

2π〈I〉 , (7)

respectively, with the mean action 〈I〉 = σzσδ. Similar harmonic oscilla-

tor/Gaussian models have been used by a number of other authors (e.g.,12,15) who

have shown that this approximation typically results in fairly accurate predictions

for single-frequency rf systems even in the presence of potential well distortion.
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We return to the linear partial differential equation (6) with the observation that

a general solution can be written as a sum of solutions with exponential time de-

pendence, which we isolate by defining F1(Φ, I; s) = F̃1(Φ, I)e−iΩs/c. Additionally,

we introduce the density bunching associated with the perturbation

B(k) =
∫

dΦdI F̃1(Φ, I)e−ikz(Φ,I), (8)

and then combine these definitions to write the linearized Vlasov equation (6) as

[

− iΩ

c
+

ωs

c

∂

∂Φ

]

F̃1(Φ, I) =
2I

γIA

e−I/〈I〉

2π〈I〉2
∫

dk
Z‖(k)

ikZ0
B(k) ∂

∂Φ
eikz(Φ,I). (9)

This simplifies further if we express z in terms of the action and angle coordinates via

(7), and use the Jacobi-Anger identity eikz(Φ,I) = eix cosΦ =
∑

n i
nJn(ka)e

inΦ where

a = σz

√

2I/〈I〉. We insert this into Eq. (9), use the fact that c/ωs = 〈I〉/αcσ
2
δ ,

and rewrite the s-derivative to find that

e−iΩΦ/ωs

[

− iΩ

ωs
+

∂

∂Φ

]

F̃1 =
∂

∂Φ

[

e−iΩΦ/ωs F̃1

]

= e−iΩΦ/ωs
2I

αcσ2
δγIA

e−I/〈I〉

2π〈I〉

∫

dk
Z‖(k)

ikZ0
B(k)

×
∞
∑

n=−∞
(in)inJn

(

kσz

√

2I/〈I〉
)

einΦ.

(10)

Since F̃ is 2π-periodic in Φ, integrating the left-hand side over Φ from Φ′ to Φ′+2π

results in e−iΩΦ′/ωs(e−2πiΩ/ωs − 1)F̃1(Φ
′, I), while the right-hand side is similarly

straightforward. Cancelling out common terms and setting Φ′ → Φ, we find that

F̃1(Φ, I) =
Ie−I/〈I〉

π〈I〉γIAαcσ2
δ

∫

dk
Z‖(k)

ikZ0
B(k)

∑

n6=0

nineinΦ

n− Ω/ωs
Jn

(

kσz

√

2I/〈I〉
)

. (11)

We can convert (11) into a closed-form equation for B(k) by multiplying by e−ikz

and integrating over action and angle. Writing the scaled action I/〈I〉 = r leads to

B(k) = 2I

γIAαcσ2
δ

∫

dκ
Z‖(κ)

iκZ0
B(κ)e

−r

2π

×
∑

n,ℓ

nin+ℓ

n− Ωωs

∞
∫

0

dr e−rJn
(

κσz

√
2r
)

J−ℓ

(

kσz

√
2r
)

2π
∫

0

dΦ
ei(n+ℓ)Φ

2π

(12)

=
2I

γIAαcσ2
δ

∫

dκ
Z‖(κ)

iκZ0
B(κ)

∞
∫

0

dr e−r
∑

n6=0

nJn
(

κσz

√
2r
)

Jn
(

kσz

√
2r
)

n− Ω/ωs
. (13)

In addition, the integration over r can be done with the help of Gradshteyn and

Ryzhik16, which lists
∫∞
0

dx e−xJn(a
√
x)Jn(b

√
x) = e−(a2+b2)/4In(ab/2), while the
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sum can be rewritten using

∑

n6=0

n

n− y
In(x) =

∞
∑

n=1

[

In(x) +
y

n− y
In(x)−

y

n+ y
In(x)

]

(14)

= ex − I0(x) +

∞
∑

n=1

2y2

n2 − y2
In(x). (15)

Hence, we find that the bunch is governed by the equation

B(k) = 2I

γIAαcσ2
δ

∫

dκ
Z‖(κ)

iκZ0
M (σzk, σzκ; Ω)B(κ), (16)

where the symmetric kernel M involves the modified Bessel function In(x), being

given by

M (x, y; Ω) = e−(x2+y2)/2 [exy − I0(xy)] + e−(x2+y2)/2
∑

n≥1

2(Ω/ωs)
2In(xy)

n2 − (Ω/ωs)2
. (17)

Although Eqs. (16) and (17) give a compact, relatively simple, and in our opin-

ion mathematically attractive relationship governing the longitudinal stability of

a perturbation to wakefields, it is unfortunately not what we can call a solution.

To turn this into something we can use, we will take inspiration from Sacherer’s

analysis5,6, in which the microwave instability is described as resulting from clas-

sical mode coupling. Within this framework the angular modes, which oscillate at

harmonics of the synchrotron frequency for I → 0, are frequency-shifted by the

impedance as the current is increased. Onset of the microwave instability occurs

at the current for which the impedance-induced frequency shift causes two initially

real and distinct modes to become degenerate in frequency. At higher currents,

the two modes couple into an exponentially damped and an exponentially growing

solution whose frequencies are complex conjugates of each other. Indeed, Eq. (16)

is consistent with this picture, in that if B̃(k) is a solution with frequency Ω̃, then

B̃(−k)∗ is also a solution with frequency Ω̃∗, so that the spectrum of (16) contains

purely real frequencies and/or ones that come in complex conjugate pairs.

We investigate this further by considering the stability equation (16) for a real

frequency Ω̄. In this case Eq. (16) becomes an eigen-problem whose real eigenvalue∝
1/I gives the current at which the perturbation oscillates ∼ e−iΩ̄z/c. By considering

a set of Ω̄(I) we can identify mode coupling with the current at which solutions with

real Ω̄ disappear. More explicitly, we discretize the integral in (16) by picking a

set of equally spaced wave-vectors, kj = −kmax + j∆k with j = 0, 1, . . . , 2kmax/∆k.

Then, for a given real Ω̄ Eq. (16) can be expressed as the eigenvalue problem

M‖b = λb, (18)

where the bunching vector b has components bj = B(kj), while the matrix M‖ and

eigenvalue λ are given by

(

M‖
)

j,ℓ
= ∆k

Z‖(kℓ)

ikℓZ0

2M
(

σzkj , σzkℓ; Ω̄
)

γαcσ2
δIA

, λ =
1

I
. (19)



December 21, 2017 7:56 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in microwave page 6

6

Real eigenvalues give physically relevant solutions, and if we take the largest such

real λ = 1/I over a range of Ω̄ we can identify the microwave instability threshold

current as the value of 1/λ at which two initially distinct solutions merge.

3. Examples using the steady-state CSR impedance

To show how our method works in practice, we will first assume that the impedance

is due entirely to steady-state coherent synchrotron radiation (CSR). For a particle

travelling in a circle of radius ρ, the steady-state, one-turn CSR impedance is17

Z‖(k) = Z0
Γ(2/3)

31/3

√
3 + sgn(k)i

2
|kρ|1/3 , (20)

where sgn(k) = +1(−1) if k if positive(negative), and the Gamma function Γ(2/3) ≈
1.354. Inserting the CSR impedance (20) into (16) and defining the dimensionless

variable x = kσz results in the following equation for the bunching perturbation:

B(x) = ξCSR
Γ(2/3)

31/3

∫

dy
sgn(y)

√
3 + i

i |y|2/3
M (x, y)B(y). (21)

As was discussed in the studies of Refs.12,14, collective instability to unshielded,

steady-state CSR is governed by the single parameter ξCSR, which we have defined

as was done in those references to be given by

ξCSR ≡ I(ρ/σz)
1/3

γIAαcσ2
δ

. (22)

The discrete version of (21) can be written as the eigenvalue equation (18) with

λ = 1/I and the matrix

(

M‖
)

j,ℓ
= ∆x

ξCSR

I

Γ(2/3)

31/3
sgn(xℓ)

√
3 + i

i |xℓ|2/3
M (xj , xℓ; Ω̄). (23)

Having written out our formalism for the CSR impedance, we now proceed to

show how to obtain a prediction for the microwave instability threshold. First,

we observe that at harmonics of the synchrotron frequency, Ω̄ = nωs for natural

numbers n, all the matrix elements associated with M from Eq. (17) diverge and

λ = 1/I → ∞. These solutions correspond to the zero-current modes that oscillate

at nωs. If we choose Ω̄ to depart from a synchrotron harmonic, for example, Ω̄ =

ωs(1 + ǫ) with 0 < ǫ < 1, the spectrum of M‖ has both real λ’s and ones that

come in complex conjugate pairs. Since λ = 1/I only real eigenvalues have physical

meaning, and the largest such λ gives the smallest current capable of supporting

stable oscillations with real frequency Ω̄. We plot these values of ξCSR ∝ 1/λ as

a function of Ω̄/ωs in Fig. 1. The Figure shows that as the current I ∝ ξCSR is

increased, the mode frequencies are shifted by the impedance from harmonics of ωs,

so that eventually the mode with initial frequency nωs collides with its neighbors

at (n ± 1)ωs. This mode coupling occurs between each harmonic of ωs, and we

identify the instability threshold ξthreshCSR with the minimum value of ξCSR for which
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Fig. 1. Example of longitudinal mode-coupling induced by the steady state CSR impedance
(20). The natural modes oscillate at harmonics of the synchrotron frequency at zero current, but

approach and merge as the current increases. The first such mode coupling occurs between the
fundamental and first harmonic when the scaled current ξthresh

CSR
≈ 0.578, which we identify with

the microwave instability threshold.

two modes merge. As shown in Fig. 1, the onset of the microwave instability is

predicted to occur when the initial Ω = ωs mode couples to one with Ω = 2ωs at

a value of ξthreshCSR ≈ 0.578. The theshold agrees fairly well with that obtained by

Fokker-Planck simulations, which show that ξthreshCSR ≈ 0.512,14.

In addition, the mode-coupling diagram of Fig. 1 looks very similar to that

plotted in Ref.12, with precisely the same predicted value of ξthreshCSR ≈ 0.578. This

is perhaps not surprising, since for this example Ref.12 also employed a harmonic

oscillator/Gaussian approximation to the longitudinal motion. Their solution was

obtained by expanding the perturbation F̃1(Φ, I) as a sum of orthogonal polynomi-

als, truncating the sum, and then solving the resulting eigenvalue problem for the

mode shapes and frequencies.

Our previous results assumed that the CSR is produced in vacuum, but in a

real accelerator the vacuum chamber walls effectively limit the radiation produced

at low frequencies. If we assume the next simplest model, in which the vacuum

chamber can be approximated as two parallel planes separated by a distance 2h,

then the shielded CSR impedance becomes a function of both ξCSR and the shielding

parameter Π = σzρ
1/2/h3/2, being given by

Z‖(y) = Z0
Γ(2/3)

31/3

√
3 + sgn(y)i

2

|y|1/3

(σz/ρ)1/3

×
√
π[
√
3 + sgn(y)i]Π2/3

Γ(2/3) |y|2/3
∞
∑

p=0

∞
∫

0

dt e−t3 exp
[

−t (2p+1)231/3π2Π4/3

2(1−i
√
3)|y|2/3

]

.

(24)
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Our theory

0.5 + 0.12Π

Fig. 2. Prediction of the microwave instability threshold as a function of the shielding parameter.
The dotted line is the fit for Π & 1 given in Ref.14.

Note that the second line quantifies the shielding; it significantly reduces the un-

shielded CSR impedance for frequencies |k| . Π/σz, while asymptoting to unity for

|k| ≫ Π/σz.

Using our model to investigate stability to the steady-state shielded CSR

impedance (24) proceeds much like what we presented for the unshielded case,

although the calculations become more numerically intense larger. In particular,

since the predicted mode coupling occurs at a frequency that scales linearly with Π,

calculating the instability threshold becomes ever more computationally intensive

for larger shielding parameters. We plot the results of our theory in Fig. 2. We

see that the theory largely follows the straight line fit (dotted line) found in Ref.14,

so that the theory also applies when shielding is strong. On the other hand, the

theory shows no evidence of the deviation from the straight scaling that has been

observed in simulations14 and experiments18 near Π ≈ 0.6. In particular, those

previous publications found that the threshold drops significantly below the line

for 0.4 . Π . 0.8, and that over this range the instability is weak and depends in

detail on the longitudinal damping and diffusion rates. Since our theory neglects

the details of damping, we do not expect it to capture these physics.

4. Conclusions

We derived an integral equation governing longitudinal stability, and shown how to

apply the physics of mode-coupling to find the microwave stability threshold current.

Applications of this theory to both shielded and unshielded CSR impedances display

good agreement over a wide range of parameters, provided the instability is not

weak. Future work will apply the theory to other impedances including that of a

broad-band resonator and the impedance model of the Advanced Photon Source.
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